字体
关灯
上一页 章节目录 下一章 进书架
数学建模(第2 / 2页)

图1一辆警车管辖范围分析示意图

由于警车的平均巡逻速度为20km/h,接警后的平均行驶速度为40km/h,由于距离信息比拟容易得到,于是我们将时间限制转化为距离限制,这样便于分析和求解。当警车接警后,在叁分钟内能从接警位置赶到事发现场的最大距离是r,其中。

如图1所示,我们设警车初始停靠位置在A点,A点是道路1,2,3,4的道路交叉口。我们仅以警车在道路1巡逻为例来进行分析,警车以的速度在道路1上A到点之间巡逻,与初始停靠点A的距离为。由于案件有可能在道路上任一点发生,当警车巡逻到A点时,假设案发现场在道路2,3,4上发生时,警车以40km/h的速度向事发现场行驶,警车能在叁分钟内从点赶到现场的最大距离为。如果警车在道路1上继续向前行驶,那么该警车能在叁分钟内赶到现场的距离继续缩小,当警车从初始点向A点行驶但没有到达点时,此时该警车的最大管辖范围比警车到达点时的最大管辖范围大。为了使警车的管辖范围尽量大,警车的巡逻范围越小越好,当时,即警车在初始停靠点静止不动时,警车的管辖范围到达最大值。

图1所分析的是特殊的情况,道路1,2,3,4对称分布,现在我们来对一般的情况进行分析,如图2所示。

图2.1图2.2

图2一辆警车最大管辖范围分析示意图

图2.1所示的情况是道路分布不对称,与图1相比,图2.1所示的道路方向和角度都发生了改变,图2.3中的情形更为复杂。参照对图1的分析方法,我们分析这两种情形下,警车巡逻时能在叁分钟内赶到现场的最大距离的规律,我们只分析图2.2的情况,道路1,2,3,4,5相交于点C,同时道路1与道路6也有个道路交叉口D,由于警车巡逻时是在道路上行驶的,行走的路线是分段直线,并不影响路径的长度,所以当警车巡逻到距离初始停靠点C点远处的D,此时假设有案件发生时,该警车要在叁分钟内能赶到现场处理案件,最大行驶距离在之内,如果警车在道路1上继续向前行驶,那么该警车能在叁分钟内赶到现场的距离继续缩小,当警车没有行驶到D点时,此时该警车的最大管辖范围比大,为了使警车的管辖范围尽量大,警车的巡逻范围越小越好。当时,即警车静止不动时,一辆警车的管辖范围能到达最大值。

以上分析的仅作定性的分析,对于叁个重点部位也可以同理分析,所得的结论是一致的,以上的分析没有考虑到90%的到达几率限制,但在设计算法需要充分考虑。

综上所述,当警车静止在初始停靠点时,在叁分钟时间限制内,警车能从初始停靠点赶到事发现场的最大距离为。

5.1.2将道路离散化

由于事发现场是等概率地分布在道路上的,由区域地图可以发现,整个区域中的道路长度不均,为了使计算结果更加精确,可将这些道路离散化。只要选取适宜的离散方案,就能使警车在经过道路上的离散的点时就相当于经过了这条道路。这样,不管是求解警车初始停靠点还求解警车赶到事发现场所经过的道路时,所计算得的的结果显然比仅考虑整条道路的叉路口要精确得多。

区域中共有307个道路交叉口,458条道路。我们采用线性插值方法对道路进行离散化,以的速度行走一分钟的距离作为步长,一分钟时间的选择是参照问题叁的结果要求来设定的,步长。用线性插值的方法,从道路的一个方向进行线性插值,实现将每条道路离散化的目标,考虑到有些道路不是的整数倍,我们就一般情况进行讨论,其分析示意图如图3所示。道路AB长度为个与长度的和,为了更精确处理CB段道路,那么就要考虑在CB之间是否要插入一个新的点,根据的长度不同,其对应的处理方式也有所不同。

图3道路离散化分析示意图

引进临界指数,选取大小的准那么是使尽量离散化后警车等效的平均巡逻速度和题目给定的速度〔〕的差值尽量小,经过计算得时,不再插入新的坐标点时能使整个区域的道路离散效果较好。此时,将CB段长度设定为处理,于是离散后的AB道路长度会比实际长度短些;当时,需要在两个点之间再插入一点,因为这样处理能使整个区域的整体道路的离散化效果比拟理想。如图3所示,在C与B间再插入新的坐标点,插入的位置在距C点的D点处,这样处理后所得的道路长度比实际长度长了。采用这样的方法进行线性插值,我们使用MATLAB编程实现对整个区域道路的离散,所得的离散结果如图4所示,离散后共得到762个节点,比原始数据多了455个节点,离散后的节点数据见附件中的“newpoint.txt〞。

图4整个区域离散结果图

采用这种插值方法道路离散后,将直线上的无穷多个点转化有限个点,便于分析问题和实现相应的算法,由图4可知,所取得的整体离散效果还是比拟理想的。

5.1.3分区域求解警车数目的算法设计

考虑到警车配置和巡逻方案需要满足:警车在接警后叁分钟内赶到普通部位案发现场的比例不低于90%,赶到重点部位必须控制在两分钟之内的要求。设计算法的目标就是求解出在满足D1情况下,总的警车数目最小,即每个区域都尽可能多地覆盖道路节点。由于警车的初始位置是未知的,我们可设警车初始停靠点在道路上的任一点,即分布在图4所示的762个离散点中的某些点节点上,总体思路是让每两辆车之间尽量分散地分布,一辆警车管辖一个分区,用这些分区覆盖整个区域。

于是我们设计算法1,步骤如下所示:

Step1:将整个区域预分配为个分区,每个分区分配一辆警车,警车的初始停靠位置设在预分配区中心的道路节点上,假设区域的中心不在道路节点上,那么将警车放在离中心最近的道路节点上;

Step2:统计分区不能覆盖的节点,调整警车的初始停靠点,使分区覆盖尽可能多的道路节点,调整分为区内调整和区间调整方案:〔1〕区内调整按照模拟退火思想构造的函数,在区间调整调整车辆初始点的位置〔后文中有详细说明〕,当分区内节点数较多时,调整的概率小些,分区内节点数较少时,调整的概率大些,〔2〕当区域中存在未被覆盖的节点或节点群〔大于等于叁个节点集中在一个范围内〕时,将警车初始位置的调整方向为朝着这些未被覆盖的节点按一定的规那么〔在

对算法的几点说明:

〔1〕该算法所取的车辆数是由多到少进行计算的,初始值设为20,这个值的选取是根据区域图估算的。

(2)预分区的优点在于使警车的初始位置尽可能均匀地分散分布,警车的初始停靠点在一个分区的中心点附近寻找得到,比起在整个区域随机生成停靠点,计算效率明显得到提高。

预分配之后,需要对整个区域不断地进行调整,调整时需要考虑调整方向和调整概率。

警车调整借鉴的是模拟退火算法的方法,为了使分区内包含道路节点数较多的分区的初始停车点调整的概率小些,而分区内包含道路节点数的少的分区内的初始停车点调整的概率大些,我们构造了一个调整概率函数,

〔1〕

〔1〕式中,均为常数,为整个区域车辆数,为第分区内覆盖的节点数,为时间,同时也能表征模拟退火的温度变化情况:初始温度较高,区域调整速度较快,随着时间的增加,温度不断下降,区域调整速度逐渐变慢,这个调整速度变化也是比拟符合实际情况的。

由式〔1〕可以得出调整概率函数,假设在相同的温度〔时间〕的条件下,由于总的车辆数目是定值,当时,即第分区内的节点数大于第分区的节点数时,分区调整的概率大些,分区的调整概率小些。分析其原因:当分区内包含了较多的节点个数时,该分区的警车初始停靠位置选取地比拟适宜了,而当分区内包含的道路节点数较少时,说明警车的初始停靠位置没有选好,需要更大概率的调整,这样的结论也是比拟客观的。

对于所有分区外未被覆盖的道路节点和很多节点〔称之为节点群〕,用来调整警车位置迁移的方向,其分析示意图如图5所示。调整方案目标是使未被覆盖的节点数尽量的少。在设计调整方向函数时,需要考虑:〔1〕节点群内节点的数目;〔2〕警车距离节点群的位置。优先考虑距离,所以在公式〔2〕中,用距离的平方来描述调整方向函数。

由于某一个区域范围内的未被覆盖节点数,整个区域未被覆盖的节点总数,分区域与未被覆盖的节点或节点群的距离等几个因素会影响到调整的方案,所以要综合考虑这些因素。于是设计了区间调整函数,

式中,表示第个分区内未被覆盖的节点数,表示第分区域与未被覆盖的节点或节点群的距离,表示未被覆盖的节点和节点群个数。

现在简要分析第分区按区间调整函数的调整方案,当某两节点群的节点数目相等,但是距离不等时,如,由区间调整公式可知,该区间向节点群方向调整。当某个分区与两个节点群的距离相等,但节点群的内节点个数不相等,如时,由〔4〕可知,该分区域会想节点群方向调整。

注意在整个调整过程中,调整几率控制是否调整,调整方向函数控制调整的方向,寻找在这种调整方案下的最优结果。

图5调整分区域示意图

〔3〕在step3中,使用Floyd算法计算出警车初始停靠点到周边各节点的最短距离,目的是当区域内有情况发生时,警车能在要求的时间限制内到达现场。

〔4〕为求出较优的警车停靠点,采用模拟退火算法,算出局部最优的方案。

警车的配置和巡逻方案

使用MATLAB编程实现算法1得到,整个区域配备13辆警车,这些警车静止在初始停靠点时,能满足D1要求。警车的初始停靠位置分别为道路交叉节点6,25,30,37,82,84,110,111,126,214,253,258,278处。每个警车所管辖的交叉点〔原始的交叉节点〕如图6所示,求解的分区结果见附录所示。

图6满足D1条件下的区分划分图

13个分区共覆盖了252个交叉点,另外的55个原始交叉点没有被这些分区域覆盖:137,138,151,159,167,168,170,174,175,186,188,189,211,215,226,242,255,260,261,262,263,267,270,271,272,275,282,283,284,287,288,289,292,296,297,299,304,305,307。在这种分区方案下,这些点中,每两个相连的点间的道路离散值长度占整个区域总的长度的比值为。因此,在整个区域配置13辆警车,每个警车在初始停靠点静止不动,当有案件发生时,离案发现场最近的警车从初始停靠点赶到现场。

评价巡逻效果显着的指标

110警车在街道上巡逻是目的是为了对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的平安感,同时还加快了接处警〔接受报警并赶往现场处理事件〕时间,提高了反响时效,为社会和谐提供了有力的保障。巡警在城市繁华街道、公共场所执行巡逻任务,维护治安,效劳群众,可以得良好的社会效应[1]。

在整个区域中,由于案发现场都在道路上,道路上的每一点都是等概率发生的,因此警车巡逻的面越广,所巡逻的街道数目越多,警车的巡逻效果就越好,对违法犯罪分子就越有威慑力,警车也能更及时地处理案件。

我们采用全面性来衡量巡逻的效果显着性,即用警车巡逻所经过的街道节点数占区域总节点数的比值。当警车重复经过同一条街道同一个离散点时,仅记录一次。

〔3〕

式中,表示警车经过的离散点数,代表整个区域总的离散点数。值越大,说明警车所经过的街道数目越多,所取得的效果越显着。

同时考虑到在巡逻过程中可能会出现这样的情况:在相同的时段内,警车会屡次巡逻局部街道,而一些街道却很少巡逻甚至没有警车到达,这样会造成一些巡逻盲区。分布很不均衡。这样就可能出现巡逻密度大的街道上的违法犯罪分子不敢在街道上作案,而流窜到巡逻密度稀疏的街道上作案,因此在相同的警车数目条件下,密度不均衡的巡逻方式的巡逻效果的效果较差,而密度较均衡的巡逻方式所取得的巡逻效果会更好些。我们引入一个巡逻的不均匀度来衡量巡逻效果的显着性,考虑到方差能表示不均衡度,于是我们用方差的大小来表征不均衡,方差越大,巡逻密度越不均衡,所取得的巡逻效果越差。

〔4〕

问题1所给出的满足D1条件下的警车数目为13辆,这时每辆警车在初始停靠点静止不动,只有该管辖区域内发生了案件时,警车才从初始停靠点赶到案发现场处理案件。当警车在巡逻状态时,所需要考虑的问题就更复杂一些,如当节点运动时,警车还能否到达D1的要求,警车的运动方向如何等问题,但根本算法思想与问题1类似,所得的算法2的框图如图7所示,

为了简化问题,我们假设各分区警车的巡逻时候,尽量保证所有的警车的行驶方向相一致,且警车都走双行道,即当警车走到某个节点后,它们又同时返回初始停靠点,警车的行驶方向有四种方式,如6所示。

在图6中,数字1代表走巡逻走的第一步,2表示朝1的巡逻方向相反的方向巡逻。在具体程序实现时,四种巡逻方向任意选择,但是尽量保证所有的警车向同一个方向巡逻。

图6各警车巡逻方向图

我们用MATLAB编程对这种巡逻方式进行计算,所得的车辆数目为18辆,综合评价指标为,其结果巡逻方案见附件中的“1193402-Result3.txt〞所示。

在满足问题叁的根底上讨论D3条件,警车的巡逻方案和评价指标

巡逻的隐蔽性表达在警车的巡逻路线和时间没有明显的规律,主要目的是让违法犯罪分子无可乘之机,防止他们在非巡逻时间实施违法犯罪活动,危害人民的生命和财产平安。

为了使巡逻的规律具有隐蔽性,这就需要警车在巡逻时至少具有两条不同的路线,时间最好也是不相同的。因此,考虑到隐蔽性时,只需要在问题2的根底上加上一个随机过程即可。对于其评价指标,由于警车有几条可选的巡逻路线,当相同的路线在同一时间内重复出现时,重新将所设定的方案再执行一遍,我们用这个时间间隔来衡量隐蔽性的程度,当循环周期越大,说明可选的巡逻方案越多,其规律就越具有隐蔽性,而循环周期越小时,说明巡逻方案比拟少,其隐蔽性较差。在巡逻状态时,最差的隐蔽性巡逻方案是巡逻方案只有一个,并且时间固定,这样的巡逻方案没有任何隐蔽性可言。

5.5整个区域为10辆车时的巡逻方案

由第叁问的结果可知,10辆车的数量是不能把整个区域完全覆盖的,其算法与算法2类似,不同的是此时车的数目已经固定了,要求使D1,D2尽量大的满足,我们求得的评价指标值为,所得的巡逻方案见附件中的“1193402-Result5.txt〞所示。

5.6平均行驶速度提高到时的巡逻方式和评价指标值

问题六的分析方法与具体实现与问题叁一致,但是警车的接警后的平均速度由原来的提高到,于是各分区的覆盖范围也增大了,将数值带入问题3的算法中求解,计算得的指标值为,其巡逻方案见附件中的“1193402-Result6.txt〞所示。

图7算法2框图

六模型的分析和评价

在求解满足D1的条件下,整个区域需要配备多少辆警车问题中,采用分区巡逻的思想,先分析能使各区管辖范围到达最大值时的规律,由特殊到一般层层进行分析,逻辑严密,结果合理。

在求解区域和警车数目时,在初步设定警车停靠点位置的根底上,用模拟退火算法思路构造函数来确定调整的概率大小,综合考虑了影响区间调整的因素后构造了函数来确定分区的调整方向,当分区按照这两个调整函数进行调整时,各分区能管辖尽可能多的道路节点,所取得效果也比拟理想。

参考文献

[1]中小城市警察巡逻勤务方式的探讨,俞详,江苏公安专科学校学报,1998年第1期

[2]Matlab7.0从入门到精通,求是科技,人民邮电出版社;

[3]不确定车数的随机车辆路径问题模型及算法,运怀立等,工业工程,第10卷第3期,2005年5月;

[4]随机交通分配中的有效路径确实定方法,李志纯等,交通运输系统工程与信息,第3卷第1期,2003年2月。

附录

图问题叁巡逻路径

图问题五巡逻路径

图问题六巡逻路径

上一页 章节目录 下一章 推荐票